Sunday, March 8, 2020

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00 – 17:00</td>
<td>ESSCI Executive Board Meeting, University of South Carolina McNair Aerospace Center, Board Room</td>
</tr>
<tr>
<td>18:00 – 20:00</td>
<td>Welcome Reception, Liberty Tap Room</td>
</tr>
</tbody>
</table>

Monday, March 9, 2020

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 – 18:00</td>
<td>Registration, University of South Carolina Alumni Center - Lobby</td>
</tr>
<tr>
<td>8:30 – 8:50</td>
<td>Welcome Remarks/Announcements</td>
</tr>
<tr>
<td></td>
<td>Hossein Haj-Hariri, Dean, College of Engineering and Computing, The University of South Carolina</td>
</tr>
<tr>
<td>8:50 – 9:45</td>
<td>University of South Carolina Alumni Center – Grand Ballroom</td>
</tr>
<tr>
<td></td>
<td>Plenary Lecture: Chris Shaddix, Sandia National Laboratories</td>
</tr>
<tr>
<td></td>
<td>Title: Pasteur’s Quadrant and Fundamental Insights into Oxyfuel Combustion</td>
</tr>
<tr>
<td></td>
<td>Session Chair: Sang Hee Won, University of South Carolina</td>
</tr>
</tbody>
</table>

Reaction Kinetics (Ballroom 1)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:10</td>
<td>1A01: The effect of hot radical reactions in the low-temperature oxidation of diethyl ether</td>
</tr>
<tr>
<td></td>
<td>A.D. Danilack<sup>1</sup>, S.J. Klippenstein<sup>2</sup>, Y. Georgievskii<sup>2</sup>, C.F. Goldsmith<sup>2</sup></td>
</tr>
</tbody>
</table>
| | ¹Brown University
| | ²Argonne National Laboratory |
| 10:30 | 1A02: Reaction mechanisms of a cyclic ether intermediate: cis-2,3-dimethyloxirane |
| | B. Rotavera¹, M. Christianson¹, A. Doner¹, M.M. Davis¹, A.L. Korić¹, J.M. Turney¹, H.F. Schaeffer III¹, L. Sheps², D.L. Osborn², C.A. Taatjes² |
| | ¹University of Georgia
| | ²Sandia National Laboratories |

Fire Research (Ballroom 2)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:10</td>
<td>1B01: Computed operational envelopes for avoiding spontaneous ignition of methane-containing gases</td>
</tr>
</tbody>
</table>
| | M. Barhoumi, F.M. Haas
| | Rowan University |
| 10:30 | 1B02: Methane-induced explosions in cylindrical vented enclosures |
| | H. Sezer¹, S. Ogunfuye², J. Hashempour¹, V. Akkerman² |
| | ¹Western Carolina University
| | ²Sandia National Laboratories |

Laminar Flames (Ballroom 3)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:10</td>
<td>1C01: Effects of carbon dioxide on laminar burning speed and flame instability of isobutane air mixture at high temperature and pressures</td>
</tr>
<tr>
<td></td>
<td>Northeastern University</td>
</tr>
<tr>
<td>10:30</td>
<td>1C02: Kinetic similarity between extinction strain rate and laminar flame speed</td>
</tr>
<tr>
<td></td>
<td>W. Ji<sup>1</sup>, T. Yang<sup>2</sup>, Z. Ren<sup>2</sup>, S. Deng<sup>1</sup></td>
</tr>
</tbody>
</table>
| | ¹Massachusetts Institute of Technology
<p>| | <sup>2</sup>Tsinghua University |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
</tr>
</thead>
</table>
| 10:50 | 1A03: Dioxane ring formation during xylan torrefaction
A. Bose, P.R. Westmoreland
North Carolina State University | 1B03: The effects of obstructions and gas compressibility on a fire scenario in a coal mining passage
F. Kodakoglu, L. Kareem, V. Akkerman
West Virginia University | 1C03: Local statistics of Darrieus-Landau instability in laminar expanding flames
Z. Liu1, V.R. Unni2, S. Chaudhuri2, C.K. Law2, A. Saha2
1Princeton University
2University of California San Diego
3University of Toronto |
| 11:10 | 1A04: Nonthermal reactions: The final frontier in understanding the kinetics of hydrogen oxidation
Y. Tao1, S.J. Klippenstein1, Y. Georgievskii1, J.A. Miller2, L. Lei2, M.P. Burke2, A.W. Jasper2, R. Sivaramakrishnan1
1Argonne National Laboratory
2Columbia University | 1B04: Estimating flammability limits using predictive modeling of laminar flame speeds
V. Mascarenhas, P.R. Westmoreland
North Carolina State University | 1C04: Determination of laminar flame speed of methane by optical analysis: Experimental setup and results
C. Ulishney1, J. Liu2, C. Dumitrescu1
1West Virginia University
2Purdue University |
| 11:30 | 1A05: Plug flow reactor network model for high pressure combustor with after-burner capability
A. Kumar, B. Hugger, J.W. Meadows
Virginia Tech | 1B05: Combustion characteristics of difluoromethane- and 2,3,3,3-tetrafluoropropene/air mixtures
P. Papas
United Technologies Research Center | 1C05: Impact of fuel nonequidiffusivity and wall conditions on premixed flame propagation in channels with open ends
O. Abidakun1, A. Adebiyi1, D. Valiev2, V. Akkerman1
1West Virginia University
2Tsinghua University |
<p>| 11:50 – 12:50 | Lunch | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Applied Combustion/Diagnostics</th>
<th>Turbulent Flames</th>
<th>Novel Combustion Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ballroom 1</td>
<td>Ballroom 2</td>
<td>Ballroom 3</td>
</tr>
<tr>
<td></td>
<td>Session Chair: A. Karmarkar</td>
<td>Session Chair: C. Dedic</td>
<td>Session Chair: S. Deng</td>
</tr>
</tbody>
</table>
| 14:00 | 1A06: Hybrid fs/ps CARS system for counterflow flame investigation
C.M. Geipel, A.H. Rauch, H.K. Chelliah, C.E. Dedic
University of Virginia
1B06: In-Situ Adaptive Manifolds: Enabling simulations of complex turbulent reacting flows
C.E. Lacey, A.G. Novoselov, M.E. Mueller
Princeton University
1C06: KiNet: A deep neural network representation of chemical kinetics
W. Ji, S. Deng
Massachusetts Institute of Technology |
| 14:20 | 1A07: Assessment of turbulence models for simulating confined swirling flows
J. Toumey¹, P. Zhang¹, R. Hadef², X. Zhao¹
¹University of Connecticut
²Larbi Ben M’hidi University
1B07: A novel framework for experiment-based turbulent combustion modeling
R. Ranade, T. Echekki
North Carolina State University
1C07: Dynamics of laminar ethylene lifted flame with ozone addition
B. Wu¹, M. Hastings², Z. Wang², W. Sun¹
¹Georgia Institute of Technology
²Chongqing University |
| 14:40 | 1B08: Closure modeling for the conditional momentum equation in low Karlovitz number turbulent premixed flames
J. Lee, M.E. Mueller
Princeton University
1C08: Homogeneous ignition of syngas over palladium at pressures 1-8 bar
R. Sui¹, J. Mantzaras², C.K. Law¹, R. Bombach²
¹Princeton University
²Paul Scherrer Institute |
| 15:00 – 15:30 | BREAK | |
| 15:30 | 1A09: Shock tube autoignition delay study of ammonia
Y. Peng, M. Karimi, D. Ranjan, W. Sun
Georgia Institute of Technology
1B09: Multi-modal manifold-based modeling of turbulent lifted flames
A.G. Novoselov, C.E. Lacey, M.E. Mueller
Princeton University
1C09: Pressure dependence of catalytic oxidation of propane over rhodium
R. Sui¹, J. Mantzaras², C.K. Law¹, R. Bombach²
¹Princeton University
²Paul Scherrer Institute |
| Time | Session 1: Reaction Kinetics Ballroom 1
Session Chair: B. Rotavera | Session 2: Turbulent Flames Ballroom 2
Session Chair: M.E. Mueller | Session 3: Novel Combustion Techniques Ballroom 3
Session Chair: J. Meadows |
|-------|---|---|---|
| 15:50 | 1A10: Methyl butene isomers ignition inside a shock tube
University of Central Florida | 1B10: Impact of air splits in a dual-stream swirler on fuel-air mixing and thermoacoustic instability in a swirl stabilized high pressure combustor
A. Karmarkar\(^1\), J. Yoon\(^2\), I. Boxx\(^2\), J. O’Connor\(^1\)
\(^1\)Pennsylvania State University
\(^2\)German Aerospace Centre (DLR) | 1C10: Simulation of methanol-air hydrothermal flames during supercritical water oxidation: Impact of kinetic parameters
S. Saha, T. Farouk
University of South Carolina |
| | 1A11: Automated generation of detailed kinetic models for the combustion of Hydrofluorocarbon (HFC) refrigerants using the reaction mechanism generator
D. Farina Jr., N.D. Harms, S.K. Sirumalla, R.H. West
Northeastern University | 1B11: Soot temperature distributions in a turbulent non-premixed ethylene jet flame
C.R. Shaddix, J. Zhang, T.C. Williams
Sandia National Laboratories | 1C11: Effect of fuel inhomogeneity in 2-D simulation of a Rotating Detonation Combustor (RDC)
P. Raj, J. Meadows
Virginia Tech |
| 17:00 | Career Development Mentor-Mentee Workshop – Ballroom 1
Hosted by Jacqueline O’Connor, Pennsylvania State University and Perrine Pepiot, Cornell University | 19:00 – 20:00
Early Career Faculty Mixer – Liberty Tap Room |
Tuesday, March 10, 2020

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 16:00</td>
<td>Registration, University of South Carolina Alumni Center - Lobby</td>
</tr>
</tbody>
</table>
| 8:20 – 8:30 | **Welcome Remarks**, University of South Carolina Alumni Center – Grand Ballroom
Jamil Khan, Chair, *Department of Mechanical Engineering, The University of South Carolina*
Announcements, Paul Papas, Sang Hee Won, Tanvir Farouk |
| 8:30 – 9:30 | **University of South Carolina Alumni Center – Grand Ballroom**
Plenary Lecture: Hasan Karim, General Electric Power and Water
Title: *Impact of Changing Landscape of Power Generation on Innovations in Gas Turbines*
Session Chair: Sang Hee Won, *University of South Carolina* |

9:30 – 9:40 **Transition to Morning Sessions**

<table>
<thead>
<tr>
<th>Time</th>
<th>Reaction Kinetics Ballroom 1</th>
<th>Alternative Fuels/Emissions Ballroom 2</th>
<th>Heterogeneous Combustion Ballroom 3</th>
</tr>
</thead>
</table>
| 9:40 | **2A01**: Effect of trace amount nitric oxide addition on iso-octane autoignition: Experiment and modeling
*R. Fang*¹, *C. Saggese*², *S.W. Wagon*², *G. Kukkadapa*², *W.J. Pitz*³, *C.-J. Sung*¹
¹University of Connecticut
²Lawrence Livermore National Laboratory |
| | **2B01**: Prediction of research/motor octane number and octane sensitivity using artificial neural networks
*T.J. Kessler*¹, *C. Hudson*², *L. Whitmore*¹, *J.H. Mack*¹
¹University of Massachusetts Lowell
²Sandia National Laboratories
³University of Washington |
| | **2C01**: Burn rate and micro-explosion of colloidal droplets of carbon-based nanoparticles in water-in-oil emulsions
L. Festa, *C. Hefner*, *M. Ghamari*
Wilkes University |
| 10:00| **2A02**: An analysis of NO production via the N₂O + O channel
*M.C. Barbet*¹, *R.E. Cornell*¹, *F.M. Haas*², *M.P. Burke*¹
¹Columbia University
²Rowan University |
| | **2B02**: Impact of side-chain structure of cycloalkanes on ignition propensity measured as Derived Cetane Number
D. Carpenter, *S. Nates*, *F.L. Dryer*, *S.H. Won*
University of South Carolina |
| | **2C02**: Assessment of discrete-phase models to be employed for modeling coal particle feeding in a Staged, Pressurized Oxy-fuel Combustor (SPOC)
A. Islas, *A. Pokharel*, *V. Akkerman*, *Z. Yang*, *R.L. Axelbaum*
West Virginia University |
| 10:20| **2A03**: Towards resolution of lingering discrepancies in the H₂O₂ decomposition system: HO₂ + HO₂
*C.E. LaGrotta*¹, *L. Lei*¹, *M.C. Barber*¹, *Z. Hong*², *D.F. Davidson*³, *R.K. Hanson*¹, *M.P. Burke*¹
¹Columbia University
²National Research Council of Canada
³Stanford University |
| | **2B03**: An investigation into the potential of biomass derived fuel alcohol mixtures for improved engine performance
*L. Behnke*¹, *E. Monrow*², *A. Landera*³, *R.W. Davis*², *A. George*², *K. Opacich*¹, *J. Heyne*¹
¹University of Dayton
²Sandia National Laboratories
³University of South Carolina |
| | **2C03**: Impacts of autoignition and vaporization characteristics on flashback behaviors of liquid fuels
S.L. Lim, *A.K. Alwahaibi*, *S.H. Won*, *F.L. Dryer*
University of South Carolina |
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40 – 10:50</td>
<td>Reaction Kinetics
Ballroom 1
Session Chair: P. Pepiot</td>
<td>2A04: Accurate prediction of secondary chemical processes in pre-partitioned adaptive chemistry
P. Sharma, P. Pepiot
Cornell University</td>
<td>Break</td>
</tr>
<tr>
<td>10:50</td>
<td>2B04: Impacts of syngas composition on its combustion characteristics in micro-channels
S. Pokharel¹, V. Akkerman¹, M. Ayoobi²
¹West Virginia University
²Wayne State University</td>
<td>2B05: A GCxGC tier alpha and combustor figure-of-merit approach on sustainable aviation fuels prescreening
Z. Yang, J. Heyne
University of Dayton</td>
<td>2C04: On the modeling of mass loss rate of interacting rectangular pool fires using Fire Dynamic Simulator (FDS)
P. Mohammadpour¹, J. Hashempour¹, H. Sezer²
¹University of North Carolina
²Western Carolina University</td>
</tr>
<tr>
<td>11:10</td>
<td>2A05: An error-controlled pre-partitioned adaptive chemistry methodology for accelerating particle PDF methods
A.S. Newale, S.B. Pope, P. Pepiot
Cornell University</td>
<td></td>
<td>2C05: Microgravity observations of a burning emulator to investigate material flammability
P. Dehghani¹, E. Auth¹, C. Cut¹, D.P. Stocker², J.L. deRis¹, P.B. Sunderland¹, J.G. Quintiere¹
¹University of Maryland
²NASA Glenn Research Center</td>
</tr>
<tr>
<td>11:20</td>
<td>2A06: Understanding the distinct kinetics of chemically termolecular reactions across various pressures
L. Lei, M.P. Burke
Columbia University</td>
<td>2B06: Electric field assisted reduction of NO<sub>x</sub> emission: A numerical study
S.F. Ahmed³, A.C. Aghdam⁴, J. Pleis⁵, R. Geiger⁵, T. Farouk⁴
³University of South Carolina
⁴ClearSign Combustion Corporation</td>
<td>2C06: Prediction of drag coefficient and Nusselt number for flow through vegetation at high Reynolds numbers using the Lattice Boltzmann Method
H. Sezer⁴, S.P. Koizumal², A. Simeoni¹
¹Western Carolina University
²Eastern Kentucky University
³Worcester Polytechnic Institute</td>
</tr>
<tr>
<td>11:40</td>
<td>2A07: Experimentally testing the performance of small molecule chemistry relevant to energetic materials
R.E. Cornell¹,², M.C. Barbet¹, M.P. Burke¹
¹Columbia University
²CCDC Armaments Center</td>
<td>2B07: High-performance jet fuel optimization and aircraft performance analysis considering O-ring volume swell
S. Kosir¹, J. Heyne¹, M. Kirby²
¹University of Dayton
²Georgia Institute of Technology</td>
<td>2C07: A data based approach for soot prediction in a laminar diffusion flame
J.N. Squeo, X. Zhao
University of Connecticut</td>
</tr>
<tr>
<td>12:00 – 13:00</td>
<td>Lunch</td>
<td>Irv Glassman Young Investigator Lecture: Xinyu Zhao, University of Connecticut
Title: Local extinction and its role in global flame propagation
Session Chair: Paul Papas, United Technologies Research Center</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Irvin Glassman Memorial Session</td>
<td>Laminar Flames</td>
<td>Fire Research</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 14:00 | 2A08: Memorial Resolution: A Tribute to Irvin Glassman
F.L. Dryer¹, C.K. Law², W.A. Sirignano³,
F.A. Williams⁴
¹University of South Carolina
²Princeton University
³University of California at Irvine
⁴University of California at San Diego | 2B08: Numerical study on the burning of methanol fed porous sphere using short chemical kinetics mechanism
S. Nair¹, V. Raghavan¹
¹Indian Institute of Technology Madras
²Worcester Polytechnic Institute | 2C08: Simulations of the unsteady response of biomass burning particles exposed to oscillatory heat flux conditions
M.M. Ahmed, A. Trouvé
University of Maryland |
| 14:20 | 2A09: Some Reflections on Irv Glassman, his Life and Legacy
Frederick L. Dryer
University of South Carolina | 2B09: An experimental and modeling study of NO effect on flame dynamics of n-dodecane cool and warm diffusion flame
M. Zhou¹,², O.R. Yehia¹, C.B. Reuter¹, C.M. Burger¹,
Y. Murakami¹, H. Zhao¹, Y. Ju¹
¹Princeton University
²Wuhan University of Technology | 2C09: The unsteady response of radiating laminar diffusion flames exposed to decreasing mixing rate conditions representative of fires
R. Xu¹, V.M. Le², A. Marchand², T. Rogaume², F. Richard²,
J. Luche², A. Trouvé¹
¹University of Maryland
²Institut PPRIME, Poitiers University (UPR 3346 CNRS) |
| 14:40 | 2A10: Effect of vitiation on flow reactor studies of pyrolysis and oxidation of jet fuels: Jet A and JP 10
C. Thomas Bowman
Stanford University | 2B10: A second-order dynamic adaptive hybrid scheme for time-integration of stiff chemistry
Y. Wu, Y. Gao, T. Lu
University of Connecticut | 2C10: Simulations of the coupling between combustion and radiation in a turbulent line fire using an unsteady flamelet model
R. Xu¹, V.M. Le², A. Marchand², S. Verma², T. Rogaume²,
F. Richard², J. Luche², A. Trouvé¹
¹University of Maryland
²Institut PPRIME, Poitiers University (UPR 3346 CNRS) |
| 15:00 | 2A11: Irvin Glassman's contributions to our understanding of soot formation
Robert J. Santoro
Pennsylvania State University | | |
<p>| 15:20 – 15:40 | BREAK | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
</tr>
</thead>
</table>
| 15:40 | 2A12: Glassman's criterion
Richard Yetter
Pennsylvania State University | 2B12: Plasma-assisted Dry Methane
Reforming for syngas production
H. Pearlman\(^1\), M. Giles\(^1\), C.-H. Chen\(^1\),
M. Demydovych\(^1\), D. Kiani\(^2\), J. Baltusaitis\(^2\)
\(^1\)Advanced Cooling Technologies Inc.
\(^2\)Lehigh University | 2C12: A data-based hybrid model for complex fuel
combustion using PCA and ANN
S. Alqahtani\(^1\), T. Echekki\(^2\)
\(^1\)North Carolina State University
\(^2\)King Khalid University |
| 16:00 | 2A13: From qualitative studies on sooting
heights of the late ‘70s to quantitative studies on
soot (inception) in the past decade
Alessandro Gomez
Yale University | 2B13: Computational study of
oxo-combustion of a two-phase fuel consisting
of pulverized coal and methane at elevated
pressure
G. Udochukwu, A. Pokharel, A.I. Montero,
V. Akkerman
West Virginia University | 2C13: Studies of nonpremixed cool flames
stabilized by autoignition
Y. Murakami\(^1\), C.B. Reuter\(^1\), O.R. Yehia\(^1\), Y. Ju\(^1\)
\(^1\)Princeton University
\(^2\)Tohoku University |
| 16:20 | 2A14: Critical properties of synthetic jet fuels
that ensure combustor operability; Key
findings of the NJFCP
Meredith B. Colket
Retired, United Technologies Research Center | 2B14: Direct numerical simulation of a
turbulent premixed flame kernel
P. Meagher, X. Zhao
University of Connecticut | 2C14: Combustion and flame analysis of byproduct
fuel mixture with high CO\(_2\) dilution from the
CL-ODH process of ethane to ethylene conversion
K.N. Vinod, M. Gore, A. Lee, L. Neal, F. Li, T. Fang
North Carolina State University |

16:40 – 17:40 **Glassman Academic Tree Event** *(All welcome to attend)* – Ballroom 1
Hosted by Frederick L. Dryer, University of South Carolina and Paul Papas, United Technologies Research Center

17:45– 18:15 **ESSCI General Member Meeting** *(All welcome to attend)* – Ballroom 1

18:00 – 19:00 Cocktail Hour

19:00 – 22:00 **ESSCI Banquet**
Wednesday, March 11, 2020

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Chair</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:20 – 8:30</td>
<td>Announcements - University of South Carolina Alumni Center – Grand Ballroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 – 9:30</td>
<td>University of South Carolina Alumni Center – Grand Ballroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plenary Lecture: Dr. John Monnier, University of South Carolina</td>
<td></td>
<td></td>
<td>The selective epoxidation of olefins using molecular O₂. An exercise in catalyst design and process control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Session Chair: Tanvir Farouk, University of South Carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30 – 9:40</td>
<td>Transition to Morning Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>Heterogenous/Applied Combustion Ballroom 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Session Chair: J.A. Palmore Jr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3A01: Method to study effect of straining flow on droplet vaporization at low Reynolds number</td>
<td>M. Setiya, J.A. Palmore Jr.</td>
<td>Virginia Tech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>3A02: High Stokes number droplets in homogeneous isotropic turbulent flow</td>
<td>C. Miranda, J. Palmore Jr.</td>
<td>Virginia Tech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>3A03: Development of high-fidelity numerical models for supercritical CO₂ oxy-combustion</td>
<td>K. Davis¹, D. Wang², A. Chiado³, M. Cremer⁴, S.H. Won⁵, T. Farouk⁶, F. Dryer⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¹Reaction Engineering International ²University of South Carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁳University of Notre Dame ⁴Worcester Polytechnic Institute ⁵USDA Forest Service ⁶Korea University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40</td>
<td>Adjourn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30 – 14:30</td>
<td>McNair Aerospace Center Lab Tour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>